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Abstract. Previous forms of the generalized nonlinear Schrodinger equation are 
ambiguously related to the corresponding nonlinear dispersion relation. In the present 
paper we therefore propose a Hamiltonian equation which is determined in a unique way. 
Soliton solutions of the nonlinear Schrodinger equations are found, and modulational 
instabilities are investigated. 

The well known cubicnonlinearSchrGdingerequation (NSE) [I, 21 hassome remarkable 
integrability properties [3]. However, in many applications it contains also some small 
additional terms which destroy these properties. The equation is then generally studied 
by means of perturbation techniques [4]. An interesting example [SI is, in normalized 
variables, the equation 

iu,+uxx+2plu12u = -ClUxl2/u* (1) 

where U =u(x, I )  represents the wave amplitude, U< -du/dt, u,=au/ax, p = + l  or -1, 
C is a constant, and the asterisk denotes the complex conjugate. When C = 0, we note 
that the two values ( * I )  of p correspond to the two different versions of the usual 
unperturbed NSE [3]. Equation ( l ) ,  which is not Hamiltonian, conserves the wave action 

m 

N = dxlu12 

A related equation 

iu, + u, + 2pl uI2u = - c u : / u  ( 3 )  
was noticed previously [4,6]. This equation has, however, no conservation laws. It 
describes the propagation of nonlinear surface waves on a plasma with a sharp boundary 
[7]. In [S, 61 it was stressed that the usual procedure [ l ,  2.31 that associates the NSE 

with the weak-dispersion, weak-nonlinearity expansion of the nonlinear dispersion 
relation 

R = R (  K ,  I U 1 7  (4) 
is ambiguous, and that ( 1 )  and (3), as well as the usual NSE (where C=O), agree 
with (4). 

It is well known that the usual NSE can be derived from the Hamiltonian density [3] 

zfo= Iux12-plu)4. ( 5 )  
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Equations ( I )  and (3) are not Hamiltonian, however. We therefore have to find a 
Hamiltonian equation that is similar to these equations. Guided by previous work 
[l-61 we thus look for the simplest additional term X I  to the Hamiltonian, which is 
consistent with the nonlinear dispersion relation (4) as well as with the basic part Xu. 
It is easy to verify that this term is 

ae, = c ( u / u * ) ( u , * ) ’ + c * ( u * / u ) u :  ( 6 )  
where C is an arbitrary complex parameter. The equation of motion that corresponds 
to the full Hamiltonian density Be= Xo+ Z, is then 

iu, +uxx+2plu12u = c * u : / u  + C ( u f ) 2 u / ( ~ * ) 2 - 2 ~ u , * ~ u / u * - 2 C ~ u , ~ 2 / u * .  (7) 

H = I - -dx X ( 8 0 )  

Equation (7) conserves the wave action (2) as well as the energy 
m 

and the momentum 
m 

Furthermore we note that (7). and also (3), is invariant with respect to Galilei 
transformations, whereas ( I )  does not have this property. 

We shall now analyse the continuous-wave (cw) and soliton solutions of equations 
( l ) ,  (3) and (7). We then look for soliton solutions of the form 

uSoI = 2iA~&sech(Zvx)] exp(4iw~*t)  (9) 
where the inverse soliton width 1) is an arbitrary parameter, and where A and w are 
constants that have to be specified. Inserting first (9) into (1) or (3) one thus finds 

w = l + C  (loa) 

pA2 = 1 + C/2. ( lob)  

and 

We note that w =pA2 = I for the usual NSE [l-41. 
The soliton (9) is immobile. By means of a Galilei transformation one directly finds 

the corresponding soliton solution of equation (3) that moves with an arbitrary velocity 
v. Thus 

us,, =2iAv[sech(2t)(x- Vt))] exp[iVx/2(1+ C)+4iwv2r -iV2t/4(1 + C ) ] .  (110) 

The moving soliton solution of equation ( I )  that is not Galilei invariant, can be found 
by means of some algebra. It is 

u , . ,=2iA~[sech(Z~(x-  Vf))] exp[iVx/2+4iwv2f -i( 1 - C )  V’t/4]. ( I l b )  

We note that the soliton solutions (110) and ( I l b )  are different, unless V is zero. 
Furthermore, it is evident from ( l o b )  that soliton solutions exist if 

p ( l+C/Z)>O.  (12) 

The inequality (12) agrees of course with the existence condition p = + I  for the usual 
NSE, where C =O. The c w  solutions of ( I )  and (3) are written in the standard form 

ucw= aoexp(ikx-iw,f). (13) 
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Inserting (13) into equation (1) one finds 

W O =  (1 - C)k2-2pai 

whereas (13) into (3) yields 

w0 = (1  + C)k2 - 2pai. 

In order to study the modulational instability [8] of the cw solutions, it is convenient 
to express U in terms of  its real amplitude a(x ,  f )  and phase +(x, I), i.e. 

(16) u(x ,  f )  = a(x, t )  exp[i+(x, r)]. 

Equation (1) is thus equivalent to the system 

a, + + 2ax+, = 0 ( 1 7 ~ )  

and 

- a 4 , +  a , , -a+:+2pa3= -C(a:+a*+:)/a (176) 

and the cw solution (13) corresponds to a = a,, 4 = & = kx - wof .  
The perturbed c w  solution is now written in the form 

where a ,  and 4, represent small amplitude and phase perturbations with wavenumber 
q and instability growth rate y. Linearizing equations (17) one thus obtains the 
dispersion relation that relates y to 9, or 

y:-2iCkqy, + q2(q2-4pai) = 0 

y,  = y+2ikq. (196) 

(19a) 

where 

It is easy to see that the condition for modulational stability, Re[y(q)] S O  for all real 
q, corresponds to the inequality 

k’3 4pa;J C2. (20) 

a , + ~ 4 J x x + 2 ~ x + . y =  -2ca,+, (210) 

-a+, + a,, - a+: + 2pa’ = - C( a: - a*+:)/  a. (216) 

y:+ q2(92-4pa3 = 0 (220) 

Similarly, we write (3) in terms of a and 6. Thus 

and 

Considering the perturbed solution (18). one obtains now, instead of (19), the equation 

where 

y2 = y + 2ikq( 1 + C ). (226) 

From (22) we obtain the usual Benjamin-Feir modulational stability condition [8] 

paisa. (23) 
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By comparing the c w  stability criteria (20) and (23) with the inequality (12) that defines 
the existence of the soliton, we conclude that, using the generalized non-Hamiltonian 
equations (1) and (3). a soliton may co-exist with a stable cw. This is not the case for 
the usual NSE. The wavenumber dependence of (20) is related to the Galilei-non- 
invariant character of (1). 

Let us now turn our attention to the generalized Hamiltonian equation (7). A 
straightforward analysis shows then that a soliton solution of the form (9) can exist 
only if C is real and satisfies the inequality (cf (12)) 

P(1+2C)PO.  (24) 
The coefficients w and A are (cf equations (10)) 

0 = 1 - 2 c  

and 

p A 2 = 1 + 2 C  

A moving soliton (cf equations (1 1 ) )  can be found by means of a Galilei transformation. 
Thus 

U =ZiAq[sech(Zq(x- Vt))] exp[iVx/2(1 -2C)+4iol)*t-iVZr/4( I -2C)l .  (26) 

In the general case, when the parameter C is complex, the Galilei transformation of 
an arbitrary solution of (7) looks like (26) with C substituted by Re C. 

The c w  solution of (7) is given by (13) with (cf (14) and (15)) 

U,, = ( 1  -2  Re C)k2-2pai .  (27) 

We note that the c w  solution, unlike the soliton, exists for arbitrary complex C. - i n e  equations for the ampiitude ana phase that correspond to (7) are (c i  ( i 7 )  and 
(21)) 

a,+a+xx+2ax+,=2 Re C(a&x+2ax+,)-2 Im C(a, ,+a: /a)  (28a) 

and 

-a+,+a,- a+:+2pa3 = -2 Re C(a+:+a, , )  - 2  Im Ca+,,. (286) 

After some algebra one obtains the dispersion relation that determines the modulational 
stability of the c w  solution (cf (19) and (22)) 

y:+q4(  1 -41CI2)-4q2pai(l -2  Re C )  = O  (290) 

where 

y, = y+2ikq( l -2  Re C). (29b) 

The modulational stability condition is thus 

IC1<1/2 

and 

p < o .  (306) 

The inequality (306) tells us that, as for the usual NSE, the c w  solution of equation 
(7) is stable only if p = -1. Comparing (30a) and (306) with (24) we notice that the 
soliton cannot exist if the c w  is stable. This conclusion is the same as that for the 
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usual NSE. There is also a parameter region p = -1, C > f ,  with real C, where the c w  
is unstable and there are no solitons. 

Finally we note that in the particular case p = 0 and C = -4, equation (7) is 

iu,+ U, = - u : / ~ u  - ( u ~ ) ~ u / ~ ( u * ) ~ + u ~ ~ u / u * + ~ u ~ ~ ~ / u * .  (31) 

Although (31) contains no cubic term it admits soliton solutions of the form ( 9 )  with 
arbitrary A and with o = 2 (cf ( 2 5 ) ) .  The c w  solutions of (31) have the frequency 
0 0 = 2 k ’  (cf (27)) and they are modulationally stable according to ( 2 9 ) .  

An interesting problem which remains to be solved concerns the stability of the 
soliton solutions considered above. If the solitons are stable, it is also worthwhile to 
simulate collisions between them numerically, in order to see how inelastic the collisions 
are. In addition, when the c w  solutions are stable one should look for modulated 
periodic solutions (cnoidal waves). Two-dimensional versions of the generalized NSE 

may also he of some interest. Thus one should investigate how the well known weak 
collapse of the usual two-dimensional NSE is influenced by our additional terms. 
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